a2 United States Patent

Burghard et al.

US009122791B2

US 9,122,791 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) IDENTIFYING A STORAGE LOCATION FOR
A STORAGE ADDRESS REQUESTED

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

DURING DEBUGGING

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Stephen J. Burghard, Portsmouth (GB);

David J. Harman, Eastleigh (GB);
Mark A. Woolley, Winchester (GB);
Andrew Wright, Eastleigh (GB)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 162 days.

Appl. No.: 13/78

Filed: Mar.

Prior Publication Data

US 2014/0258785 Al Sep. 11, 2014

Int. Cl1.
GO6F 11/00
GO6F 11736
U.S. CL

5,615

5,2013

(2006.01)
(2006.01)

CPC e, GO6F 11/362 (2013.01)
Field of Classification Search
CPC ..o G11C 16/0425; GO6F 11/362; GO6F

11/3664; GOGF 11/3652; GOGF 11/3648
USPC ............ 714/30,38.11; 717/124, 127, 703/28;

References Cited

U.S. PATENT DOCUMENTS

4,953,084 A *
5386,522 A * U

8/1990 Meloy et al.
1995 Evans ...

120 —

CLIENT COMPUTING
DEVICE

122 —1 ]

CLIENT
PROCESSING
SOFTWARE

124

710/110
See application file for complete search history.

.................. 717/131

110

5,713,010 A * 1/1998 Buzbeeetal. ... 717/124
6,430,707 B1* 82002 Matthews etal. ... 714/37
6,550,056 B1* 4/2003 Mizumoto etal. ............ 717/124

7,318,174 B2 1/2008 Lewis

7,975,183 B2 7/2011 Xuetal.

8,201,151 B2 6/2012 Barker et al.

8,762,779 B2* 6/2014 Gaskinsetal. ... 714/30
8,812,289 B1* 82014 Chanetal ... 703/28

2002/0007430 Al* 1/2002 Kawasaki etal. ............ 710/110
2003/0142550 Al* 7/2003 Kawaharaetal. ....... 365/185.28
2004/0103175 Al* 5/2004 Rothmanetal. .............. 709/222

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2010204934 A 9/2010

OTHER PUBLICATIONS

Allen Systems Group Inc., “ASG Software Soultions—ASG-Smart-
Test/CICS for Testing and Debugging in CICS” asg.com [online],
[retrieved on Jan. 2, 2013]. Retrieved from the Internet <URL: http://
www.asg.com/Products/View/ASG-Existing-Systems-Workbench-
%28ESW-%29-Suite/ ASG-SmartTest-CICS .aspx>.

Primary Examiner — Bryce Bonzo
Assistant Examiner — Jeison C Arcos
(74) Attorney, Agent, or Firm — Maeve McCarthy

(57) ABSTRACT

A method for identifying a storage location for a requested
storage address. The method includes receiving a request to
view data at a storage address and determining the requested
storage address corresponding to a plurality of storage loca-
tions. The method includes determining whether the
requested storage address identifies memory related to a
dump file being analyzed by a dump formatter. Then, in
response to determining the requested storage address iden-
tifies memory related to the dump file being analyzed by the
dump formatter, the method includes identifying one of the
plurality of storage locations. The method includes directing
the request to the identified storage location.

17 Claims, 3 Drawing Sheets

%100

SERVER COMPUTING

DEVICE ~—130

DEBUGGER =

STORAGE
IDENTIFYING 11— 134
PROGRAM

DUMP FORMATTER

—— —4—136
138




US 9,122,791 B2

Page 2
(56) References Cited 2008/0295077 Al* 11/2008 Senguptaetal. ... 717/124
2010/0174948 Al* 7/2010 Glotzbachetal. .............. 714/38
U.S. PATENT DOCUMENTS 2011/0271152 Al 11/2011 Hattori et al.
2006/0248391 Al* 11/2006 Gloveretal. ................... 714/30 2012/0072791 Al 3/2012 Kimet al.
2007/0130231 Al* 6/2007 Brown et al. 707/204 2012/0173919 Al* 7/2012 Pateletal. ...cocovovvnn.. 714/4.11
2007/0207800 Al* 9/2007 Daley et al. ..... ... 455/425

2008/0222612 Al* 9/2008 Glotzbach etal. ............ 717/127 * cited by examiner



US 9,122,791 B2

Sheet 1 of 3

Sep. 1, 2015

U.S. Patent

8¢l

H311VNYO4 dWNd

AWVYHO0Hd
el —T1—1 ONIAJILNAQI
JOVHOLS

d399Nn43d

(A% T &

08} — 30IA3Q
ONILNAINOD ¥AANIS

8?\\\

l "OId

MHOMLAN

Ol

vel

JHYML0S
ONISS300dd
IN3IT0

|__—¢c¢l

30I1A3d
ONILNANOD IN3IO

——0cCl




US 9,122,791 B2

Sheet 2 of 3

Sep. 1, 2015

U.S. Patent

90z~ NOILYOO139WVH0LS

Z 'Ol
(N3 )

01 1S3N03Y 1o3HId

a

SS3¥AAY IOVHOLS IHL

¥0Z —— HLIM @31VIO0SSY NOILYOOT

JOVHOLS JHL INIWY313d

a

¢0C ~—

SS3¥AAV IOVHOLS MIIA
Ol 1S3ND3Y LdIOH3LNI

#QX\\

(_4avis )




US 9,122,791 B2

Sheet 3 of 3

Sep. 1, 2015

U.S. Patent

0€l HO 02l

=

€ 9Old
(s)3oin3a
TVYNYILXT
N
gLE
LINN SNOILYOINNWINOD (SEVAEITN AVdsIia
o/l
gcl 7
ocl 0LE
Vel Nfrm oxmm
zel

A N20¢

1-z21L oLe

\ (S)40SS3aD0Nd
JHOVD
mwﬁokau N
IN3ILSISHAd ¥0€
VY
N\
80¢ ple
AHOWAN
/
90¢




US 9,122,791 B2

1

IDENTIFYING A STORAGE LOCATION FOR
A STORAGE ADDRESS REQUESTED
DURING DEBUGGING

FIELD OF THE INVENTION

The present invention relates generally to the field of soft-
ware debuggers, and more particularly to identifying a stor-
age location for a storage address requested during debug-

ging.
BACKGROUND OF THE INVENTION

In software support, a customer will often provide evidence
of a software problem in the form of output provided by the
computer program itself, called “dump files.” Dump files
contain the recorded state of the working memory of a com-
puter program at a specific time, generally when the program
has crashed, and are used to assist in diagnosing errors in
computer programs. Dump files can include reports of the
problem, recent activity, and the current state of the computer
at the time the problem occurred. Dump files allow a com-
puter program to be analyzed without monopolizing the oper-
ating system and can be used to retrieve information from a no
longer running program. Dump files are written in machine
code, which can be converted into a readable form by dump
formatters to allow service engineers to determine a cause of,
and potentially a solution to, the customer’s problem.

In addition to reviewing dump files, service engineers and
software developers also use debugging software to study the
computer program’s behavior in detail. One example of
debugging software is a source level debugger (SLD), which
allows the service engineer or software developer to analyze
line by line the problem source code. Debugging software can
be used to debug dump formatters, either in the case of a
customer problem or during the debugging of new code.
When a dump formatter converts a dump file into readable
form, the dump file itself is loaded into the dump formatter’s
memory. As a dump formatter is executed, the service engi-
neer or software developer may want to browse specific
memory locations or modity stored values. The dump file
contains storage addresses, which are used to locate specific
parts of memory. However, the dump formatter’s memory
locations are different to the memory locations where the
contents were originally held for use by the computer pro-
gram.

SUMMARY

Embodiments of the present invention disclose a method,
computer program product, and computer system for identi-
fying a storage location for a requested storage address. The
method includes receiving a request to view data at a storage
address and determining, by one or more computer proces-
sors, the requested storage address corresponding to a plural-
ity of storage locations. The method includes determining
whether the requested storage address identifies memory
related to a dump file being analyzed by a dump formatter and
in response to determining the requested storage address
identifies memory related to the dump file being analyzed by
the dump formatter, identifying one of the plurality of storage
locations. The method then includes directing the request to
the identified storage location.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating a distrib-
uted data processing environment, in accordance with an
embodiment of the present invention.

10

15

20

25

35

40

45

55

60

65

2

FIG. 2 is a flowchart depicting operational steps of a stor-
age identifying program for identifying a requested storage
address and redirecting the request to a relevant storage loca-
tion, in accordance with an embodiment of the present inven-
tion.

FIG. 3 depicts a block diagram of internal and external
components of a data processing system, such as the server
computing device or the client computing device of FIG. 1, in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer-readable medium(s) having computer
readable program code/instructions embodied thereon.

As will be appreciated by one skilled in the art, aspects of
the present invention can be embodied as a method, computer
system, or computer program product. Accordingly, aspects
of the present invention can take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
can all generally be referred to herein as a “circuit,” “module”
or “system.” Furthermore, aspects of the present invention
can take the form of a computer program product embodied in
one or more computer-readable storage medium(s) having
computer readable program code/instructions embodied
thereon.

Any combination of computer-readable storage media can
be utilized. A computer-readable storage medium can be, for
example, but not limited to, an electronic, magnetic, optical,
or semiconductor system, apparatus, or device, or any suit-
able combination of the foregoing. More specific examples (a
non-exhaustive list) of a computer-readable storage medium
can include the following: a portable computer diskette, a
hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer-read-
able storage medium can be any tangible medium that can
contain, or store a program for use by or in connection with an
instruction execution system, apparatus, or device.

Program code embodied can be transmitted using any
appropriate medium, including but not limited to wireless,
wireline, optical fiber cable, RF, etc., or any suitable combi-
nation of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on a user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely



US 9,122,791 B2

3

on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions can also be stored in
a computer-readable storage medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer-readable storage medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer-implemented pro-
cess such that the instructions which execute on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The present invention will now be described in detail with
reference to the Figures. FI1G. 1 is a functional block diagram
illustrating a distributed data processing environment, gener-
ally designated 100, in accordance with one embodiment of
the present invention.

Distributed data processing environment 100 includes cli-
ent computing device 120 and server computing device 130,
all interconnected over network 110. Network 110 can be, for
example, a local area network (LAN), a wide area network
(WAN) such as the internet, or a combination of the two, and
can include wired, wireless, or fiber optic connections. In
general, network 110 can be any combination of connections
and protocols that will support communications between cli-
ent computing device 120 and server computing device 130.

Client computing device 120 includes client processing
software 122 and storage location 124. In various embodi-
ments of the present invention, client computing device 120
can be a laptop computer, a tablet computer, a netbook com-
puter, a personal computer (PC), a desktop computer, a per-
sonal digital assistant (PDA), a smart phone, or any program-
mable electronic device capable of communicating with
server computing device 130 via network 110. Client com-
puting device 120 may include internal and external hardware
components, as depicted and described in further detail with
respect to FIG. 3.

Client processing software 122 can be any computer pro-
gram, either system software or application software, running
on a client device, for example, client computing device 120,

30

35

40

45

55

4

that can contain a problem, or bug. In an exemplary embodi-
ment of the present invention, client processing software 122
is capable of producing output files and reports containing
evidence of the problem, called “dump files.” Dump files can
contain a log of recent events in client processing software
122, the state of memory at the time of the problem, and other
useful diagnostic information provided by the computer pro-
gram itself. The dump files are loaded into a dump formatter,
for example, dump formatter 136 on server computing device
130, which converts the files into a form readable by a pro-
grammer or software engineer. Storage location 124 is the
memory location containing data memory and storage for
client processing software 122. In various embodiments of
the present invention, storage location 124 may be located
external to, and can communicate with, client processing
software 122 via network 110.

Server computing device 130 includes debugger 132, stor-
age identifying program 134, dump formatter 136, and stor-
age location 138. Server computing device 130 can be a
laptop computer, a tablet computer, a netbook computer, PC,
a desktop computer, PDA, a smart phone, or any program-
mable electronic device capable of communicating with cli-
ent computing device 120 via network 110, and with various
components and devices within distributed data processing
environment 100. In an exemplary embodiment of the present
invention, server computing device 130 can represent a com-
puting system utilizing clustered computers and components
to act as a single pool of seamless resources when accessed
through a network. This is acommon implementation for data
centers and for cloud computing applications, and can be
utilized in a customer support environment, such that a pro-
grammer addressing customer computer problems operates
on server computing device 130. Server computing device
130 may include internal and external hardware components,
as depicted and described in further detail with respect to FIG.
3.

Debugger 132 can be any computer program or software
tool used for testing and debugging another program. Debug-
ging is a process to find and reduce, or resolve, problems and
bugs in a computer program or a piece of electronic hardware.
In an exemplary embodiment of the present invention, debug-
ger 132 is a source level debugger (SLD), which allows a
programmer to find and fix bugs in a computer program by
showing the location of the bug in the program’s original
code. Debugger 132 may implement debugging using a com-
mand line interface (CLI) or a graphical user interface (GUI).

In the exemplary embodiment of the present invention,
debugger 132 operates to debug dump formatter 136. Dump
formatter 136 can be any software tool capable of converting
data written by a computer program to a dump file, typically
containing machine code (e.g., binary code), into a format
able to be read and analyzed by a programmer. Storage loca-
tion 138 is the memory location storing data memory and
storage for dump formatter 136.

In the exemplary embodiment, when debugging a dump
file in dump formatter 136, debugger 132 may request to view
data at a storage location to aid in determining a problem and
finding a solution. A request to view data at the storage loca-
tion may include identifying the storage location by a storage
address. The storage address for the storage location provided
by dump formatter 136 links to a storage location within
dump formatter 136, for example, storage location 138. How-
ever, the relevant storage location to help identify and solve
the problem is located within the original program being
formatted and debugged, such as storage location 124 in
client processing software 122. Storage identifying program



US 9,122,791 B2

5

134 determines the storage location being requested and
directs the request to the relevant storage location.

Storage identifying program 134 identifies that a program
being analyzed is addressing memory within a different stor-
age location than the storage location of dump formatter 136
being analyzed by debugger 132. In the exemplary embodi-
ment of the present invention, storage identifying program
134 operates within debugger 132 to intercept, or receive,
storage address requests from the debugger and determine the
relevant storage location being requested. While in FIG. 1,
storage identifying program 134 is included within debugger
132, one of skill in the art will appreciate that in other embodi-
ments, storage identifying program 134 may be located else-
where within distributed data processing environment 100
and can communicate with debugger 132 via network 110.

FIG. 2 is a flowchart depicting operational steps of storage
identifying program 134 for identifying a requested storage
address and redirecting the request to a relevant storage loca-
tion, in accordance with an embodiment of the present inven-
tion.

Storage identifying program 134 intercepts, or receives,
requests to view a storage address (step 202). When debug-
ging a dump file in dump formatter 136, debugger 132 may
request to view a memory or storage location, identified by a
storage address, in order to view data, browse memory loca-
tions or modify stored values. For example, a programmer on
server computing device 130 running debugger 132 to debug
dump formatter 136 can be analyzing a dump file from client
processing software 122. The programmer may want to deter-
mine how a problem within dump formatter 136 handles data
held in a certain part of a storage location associated with
client processing software 122. Through debugger 132, a
request can be made to view the data at the storage address.

Storage identifying program 134 determines the storage
location associated with the requested storage address (step
204). When dump formatter 136 is executed to convert a
dump file, the dump file itself is loaded into the dump format-
ter’s storage location, for example, storage location 138 in
server computing device 130. Therefore, a request from
debugger 132 to view a storage address in dump formatter 136
will not display the relevant storage location for the dump file.
The storage addresses found in the dump file are associated
with memory contents and data in the originating program,
for example, client processing software 122 data stored in
storage location 124.

Storage identifying program 134 maintains data regarding
memory loaded from the dump file into storage location 138
within dump formatter 136. In an exemplary embodiment of
the present invention, storage identifying program 134 main-
tains the data in a table which maps storage addresses from
storage location 124 to equivalent storage addresses in dump
formatter 136 and storage location 138.

Storage identifying program 134 directs the request to the
storage location (step 206). Storage identifying program 134,
based on maintained data, directs the request to the relevant
storage location, for example, storage location 124. In various
embodiments of the present invention, a storage request may
return and display the data from the relevant storage location
on a user interface or viewing panel for the programmer to
view.

FIG. 3 depicts a block diagram of components of client
computing device 120 or server computing device 130 in
accordance with an illustrative embodiment of the present
invention. It should be appreciated that FIG. 3 provides only
an illustration of one implementation and does not imply any
limitations with regard to the environments in which different

40

45

6

embodiments may be implemented. Many modifications to
the depicted environment may be made.

Client computing device 120 and server computing device
130 can include communications fabric 302, which provides
communications between computer processor(s) 304,
memory 306, persistent storage 308, communications unit
310, and input/output (I/O) interface(s) 312. Communica-
tions fabric 302 can be implemented with any architecture
designed for passing data and/or control information between
processors (such as microprocessors, communications and
network processors, etc.), system memory, peripheral
devices, and any other hardware components within a system.
For example, communications fabric 302 can be imple-
mented with one or more buses.

Memory 306 and persistent storage 308 are computer-
readable storage media. In this embodiment, memory 306
includes random access memory (RAM) 314 and cache
memory 316. In general, memory 306 can include any suit-
able volatile or non-volatile computer-readable storage
media.

Client processing software 122 and storage location 124 on
client computing device 120, and debugger 132, storage iden-
tifying program 134, dump formatter 136, and storage loca-
tion 138 on server computing device 130 are stored in persis-
tent storage 308 for execution and/or access by one or more of
the respective computer processors 304 via one or more
memories of memory 306. In this embodiment, persistent
storage 308 includes a magnetic hard disk drive. Alterna-
tively, or in addition to a magnetic hard disk drive, persistent
storage 308 can include a solid state hard drive, a semicon-
ductor storage device, read-only memory (ROM), erasable
programmable read-only memory (EPROM), flash memory,
or any other computer-readable storage media that is capable
of storing program instructions or digital information.

The media used by persistent storage 308 may also be
removable. For example, a removable hard drive may be used
for persistent storage 308. Other examples include optical and
magnetic disks, thumb drives, and smart cards that are
inserted into a drive for transfer onto another computer-read-
able storage medium that is also part of persistent storage 308.

Communications unit 310, in these examples, provides for
communications with other data processing systems or
devices, including between client computing device 120 and
server computing device 130. In these examples, communi-
cations unit 310 includes one or more network interface
cards. Communications unit 310 may provide communica-
tions through the use of either or both physical and wireless
communications links. Client processing software 122, stor-
age location 124, debugger 132, storage identifying program
134, dump formatter 136, and storage location 138 may be
downloaded to persistent storage 308 through communica-
tions unit 310.

1/O interface(s) 312 allows for input and output of data with
other devices that may be connected to client computing
device 120 or server computing device 130. For example, [/O
interface 312 may provide a connection to external devices
318 such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External devices 318 can also
include portable computer-readable storage media such as,
for example, thumb drives, portable optical or magnetic disks,
and memory cards. Software and data used to practice
embodiments of the present invention, e.g., client processing
software 122, storage location 124, debugger 132, storage
identifying program 134, dump formatter 136, and storage
location 138, can be stored on such portable computer-read-
able storage media and can be loaded onto persistent storage
308 via /O interface(s) 312. I/O interface(s) 312 also connect



US 9,122,791 B2

7

to a display 320. Display 320 provides a mechanism to dis-
play data to a user and may be, for example, a computer
monitor or an incorporated display screen, such as is used in
tablet computers and smart phones.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appreci-
ated that any particular program nomenclature herein is used
merely for convenience, and thus the invention should not be
limited to use solely in any specific application identified
and/or implied by such nomenclature.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

What is claimed is:
1. A method for identifying a storage location for a
requested storage address, the method comprising the steps
of:
receiving a request to view data at a storage address;
determining, by one or more computer processors, the
requested storage address corresponds to a plurality of
storage locations, wherein the plurality of storage loca-
tions includes at least a storage location corresponding
to an original program being debugged and a storage
location corresponding to a dump formatter;

determining, by the one or more computer processors,
whether the requested storage address identifies
memory related to a dump file being analyzed by the
dump formatter;

responsive to determining whether the requested storage

address identifies memory related to a dump file being
analyzed by the dump formatter, determining whether
the requested storage address identifies the storage loca-
tion of the plurality of storage locations corresponding
to the dump formatter;

responsive to determining the requested storage address

identifies the storage location of the plurality of storage
locations corresponding to the dump formatter, identi-
fying the storage location of the plurality of storage
locations corresponding to the original program being
debugged; and

directing the request to the identified storage location cor-

responding to the original program being debugged.

2. The method of claim 1, wherein the step of directing the
request to the identified storage location further comprises
displaying data from the identified storage location corre-
sponding to the requested storage address.

5

20

25

35

40

45

50

55

65

8

3. The method of claim 1, wherein the step of identifying
the storage location of the plurality of storage locations cor-
responding to the original program being debugged further
comprises:

determining, by the one or more computer processors, the

original program created the dump file being analyzed
by the dump formatter;

determining, by the one or more computer processors, the

requested storage address is equivalent to a storage
address used by the original program; and

requesting, from the original program, the storage location

accessed by the original program for the equivalent stor-
age address.

4. The method of claim 1, wherein the requested storage
address corresponds to data, including memory and informa-
tion for operation of a program, stored in a storage location.

5. The method of claim 1, wherein the step of determining
whether the requested storage address identifies the storage
location of the plurality of storage locations corresponding to
the dump formatter further comprises:

receiving the requested storage address from a debugger,

wherein the debugger is debugging the dump formatter;
and

determining, by the one or more computer processors, the

dump file was loaded into memory of the dump format-
ter.

6. A computer program product for identifying a storage
location for a requested storage address, the computer pro-
gram product comprising:

one or more non-transitory computer-readable tangible

storage media and program instructions stored on the
one or more computer-readable tangible storage media,
the program instructions comprising:

program instructions to receive a request to view data at a

storage address;

program instructions to determine the requested storage

address corresponds to a plurality of storage locations,
wherein the plurality of storage locations includes at
least a storage location corresponding to an original
program being debugged and a storage location corre-
sponding to a dump formatter;

program instructions to determine whether the requested

storage address identifies memory related to a dump file
being analyzed by the dump formatter;

responsive to determining whether the requested storage

address identifies memory related to a dump file being
analyzed by the dump formatter, program instructions to
determine whether the requested storage address identi-
fies the storage location of the plurality of storage loca-
tions corresponding to the dump formatter;

responsive to determining the requested storage address

identifies the storage location of the plurality of storage
locations corresponding to the dump formatter, program
instructions to identify the storage location of the plu-
rality of storage locations corresponding to the original
program being debugged; and

program instructions to direct the request to the identified

storage location corresponding to the original program
being debugged.

7. The computer program product of claim 6, wherein
program instructions to direct the request to the identified
storage location further comprise program instructions to
display data from the identified storage location correspond-
ing to the requested storage address.

8. The computer program product of claim 6, wherein the
program instructions to identify the storage location of the



US 9,122,791 B2

9

plurality of storage locations corresponding to the original
program being debugged further comprise:

program instructions to determine the original program

created the dump file being analyzed by the dump for-
matter;

program instructions to determine the requested storage

address is equivalent to a storage address used by the
original program; and

program instructions to request, from the original program,

the storage location accessed by the original program for
the equivalent storage address.

9. The computer program product of claim 6, wherein the
requested storage address corresponds to data, including
memory and information for operation of'a program, stored in
a storage location.

10. The computer program product of claim 6, wherein the
program instructions to determine whether the requested stor-
age address identifies the storage location of the plurality of
storage locations corresponding to the dump formatter further
comprise:

program instructions to receive the requested storage

address from a debugger, wherein the debugger is
debugging the dump formatter; and

program instructions to determine the dump file was

loaded into memory of the dump formatter.

11. A computer system for identifying a storage location
for a requested storage address, the computer system com-
prising:

one or more computer processors;

one or more non-transitory computer-readable tangible

storage media;

program instructions stored on the one or more computer-

readable tangible storage media for execution by at least
one of the one or more computer processors, the pro-
gram instructions comprising:

program instructions to receive a request to view data at a

storage address;

program instructions to determine the requested storage

address corresponds to a plurality of storage locations,
wherein the plurality of storage locations includes at
least a storage location corresponding to an original
program being debugged and a storage location corre-
sponding to a dump formatter;

program instructions to determine whether the requested

storage address identifies memory related to a dump file
being analyzed by the dump formatter;

responsive to determining whether the requested storage

address identifies memory related to a dump file being
analyzed by the dump formatter, program instructions to
determine whether the requested storage address identi-
fies the storage location of the plurality of storage loca-
tions corresponding to the dump formatter;

responsive to determining the requested storage address

identifies the storage location of the plurality of storage
locations corresponding to the dump formatter, program
instructions to identify the storage location of the plu-
rality of storage locations corresponding to the original
program being debugged; and

10

15

20

25

30

35

40

45

50

55

10

program instructions to direct the request to the identified
storage location corresponding to the original program
being debugged.

12. The computer system of claim 11, wherein program
instructions to direct the request to the identified storage
location further comprise program instructions to display
data from the identified storage location corresponding to the
requested storage address.

13. The computer system of claim 11, wherein the program
instructions to identify the storage location of the plurality of
storage locations corresponding to the original program being
debugged further comprise:

program instructions to determine the original program

created the dump file being analyzed by the dump for-
matter;

program instructions to determine the requested storage

address is equivalent to a storage address used by the
original program; and

program instructions to request, from the original program,

the storage location accessed by the original program for
the equivalent storage address.

14. The computer system of claim 11, wherein the
requested storage address corresponds to data, including
memory and information for operation of a program, stored in
a storage location.

15. The computer system of claim 11, wherein the program
instructions to determine whether the requested storage
address identifies the storage location of the plurality of stor-
age locations corresponding to the dump formatter further
comprise:

program instructions to receive the requested storage

address from a debugger, wherein the debugger is
debugging the dump formatter; and

program instructions to determine the dump file was

loaded into memory of the dump formatter.

16. The computer system of claim 11, wherein the program
instructions to identify the storage location of the plurality of
storage locations corresponding to the original program being
debugged further comprise:

program instructions to determine data regarding memory

for the dump file was loaded into memory of the dump
formatter; wherein the data is stored in a table mapping
one or more storage addresses corresponding to the
original program being debugged to equivalent one or
more storage addresses corresponding to the dump for-
matter; and

program instructions to identify an equivalent storage loca-

tion of the one or more storage addresses corresponding
to the original program being debugged based, at least in
part, on the identified storage location of the plurality of
storage locations corresponding to the dump formatter.

17. The computer system of claim 11, wherein the storage
location corresponding to the original program being
debugged and the storage location corresponding to the dump
formatter are stored within at least two separate computing
devices.



